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ABSTRACT 

Cognitive superiority using artificial intelligence aims to extract relevant information from a huge amount of 
data to create military and non-military situational awareness. Reliable and timely interpretations of visual 
information are contributing factors to gain such superiority. With the rise of large-scale, multimodal deep 
learning models like Contrastive Language-Image Pre-training (CLIP), a promising type of neural network is 
emerging to perform such visual recognition tasks. This kind of network is able to extract knowledge from 
visual input by applying Optical Character Recognition (OCR), facial recognition, or object classification at 
once and without being explicitly fine-tuned. This zero-shot capability of CLIP is enabled by the choice of 
specific text prompts targeting the searched object within an image. 

In this paper, we investigate how CLIP can be used to identify vehicles in the military domain and use lessons 
learned from the Ukraine-Russia war. For analysis, a new dataset was created containing images with military 
and civilian vehicles, but also images without vehicles. First, we search for appropriate queries to leverage 
single search results and then ensemble multiple prompts. Second, we explore whether this approach can be 
used to identify military vehicles from video streams based on surveillance cameras and smartphones. 
We show on our image dataset that with thoughtful prompt engineering, the CLIP model is able to identify 
military vehicles with high precision and recall. The performance of the video dataset depends on object size 
and video quality. With this approach, allies, as well as hostile parties, can systematically analyze large 
amounts of video and image data, without time-consuming data collection and training. 

1.0 INTRODUCTION 

In recent years, deep neural networks, such as AlexNet [1] and ResNet [2], have achieved outstanding 
performance on image classification benchmarks like ImageNet [3]. Image classification is mostly concerned 
with the presence of a specific object in an image. For each data sample, an image and its label is available. These 
samples are used to update the model parameters. This type of learning paradigm is called “supervised learning.” 

Deep neural networks enable wide-ranging applications for robotics, self-driving cars, traffic monitoring, and 
pedestrian recognition. However, a great amount of data has to be collected and manually annotated for each 
new use case. This is not only expensive and time consuming, but also problematic if the data is classified and 
may not be passed to third parties. Furthermore, in supervised deep learning, the networks are typically 
restricted to predict a certain number of classes. For example, the ImageNet classification dataset has 1,000 
classes and the MS COCO [4] dataset has only 80 classes. To learn new concepts not embodied in these 
datasets, additional annotations have to be added. 

One possible solution for these issues is zero-shot learning. Larochelle et al. [5] defined zero-shot learning as 
a training process where only descriptions of the novel classes are present during the training. This is typically 
achieved by grouping images and related texts as pairs. Neural networks are then used to find common 
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representations between these modalities [6], [7], [8], [9]. This joint learning embeds information from the text 
into the representation of the image, and vice versa. In traditional supervised classification, the output of the 
neural network is fixed and only probabilities according to the learned classes are predicted. In contrast, 
zero-shot learning uses flexible textual descriptions of an arbitrary number of classes that minimize the distance 
between text and image representation. These textual descriptions, also known as text prompts, must be 
carefully chosen during inference to represent a specific class. This type of research, called “prompt 
engineering,” is currently a very active field of research [10], [11]. 

Modern zero-shot approaches, such as CLIP [10] or ALIGN [11], use large-scale datasets to cover as many 
concepts as possible. In doing so, they show wide-ranging capabilities on many datasets, which implies a high 
degree of generalization. In both approaches, an image encoder and a text encoder are trained together to create 
vector embeddings that minimize the distance between the text and the image representation. 

In this work, we analyze the capabilities on the basis of military-related data without additional training on 
them. To evaluate these skills, we collect two datasets: 

• An image dataset with military vehicles, civilian vehicles, and without vehicles to find appropriate
prompts for each class. This image dataset is used for additional analysis to understand which text
prompt syntax is important for powerful zero-shot classification. See details in Section 2.4.

• A video dataset to examine the found prompts, for different in-the-wild settings, such as dash cameras, 
traffic surveillance, and mobile devices in context of the Ukraine war. See Section 2.5.

The settings in our experiments refer to the present situation in Ukraine. Here, surveillance and public webcams 
were used to show the invasion of Russian tanks and logistics into Ukrainian territory in the media. However, 
cognition of Ukrainian or Western logistics would also be possible. An enemy actor can use open-source data 
to obtain situational awareness of movement of troops, logistics, or humanitarian aid. To hinder this evaluation, 
Germany’s public traffic surveillance cameras have been switched off [12]. Our results show that a malicious 
actor can use CLIP to screen masses of traffic surveillance data and videos from public sources for 
reconnaissance purposes. For this type of solution, neither time and labor-intensive data collection and labeling 
is needed, nor do computationally expensive models need to be trained. 

2.0 MODEL AND DATASETS 

In the following, we describe the used zero-shot model and our metrics for experiments and discussion. 
Moreover, we give a description of the two datasets used in our analysis. 

2.1 CLIP Model 
One of the best zero-shot models currently available is CLIP. Radford et al. [10] developed a completely new 
way to learn as many concepts as possible using a simple contrastive pre-training objective. CLIP is pre-trained 
on 400 million image-text pairs. However, the dataset is not publicly available and therefore no details about 
the training data are known. The images are embedded by an image encoder and the texts by a separate text 
encoder. The objective is to reduce the distance of the embeddings using a symmetric cross-entropy loss, 
depicted in Figure 1 (left). The cosine similarity is used as the distance metric. Based on this simple pre-training 
objective, CLIP learns general concepts without supervised annotations and thus enables strong zero-shot 
capabilities. Both ResNet [2] with various improvements [13], [14] and Vision Transformer [15] are used as 
image encoders, and the Transformer architecture [16] is used for the text embeddings. Radford et al. provides 
nine different configurations of their CLIP model. For our analyses, we use ViT-B/16, a mid-sized model with 
86.2 million and 37.8 million parameters for the image and text encoder, respectively. To prevent overfitting, 
several data augmentations are normally used, but these can be neglected due to the size of the pre-training 
dataset, and only simple cropping takes place. The pre-training dataset is not public, therefore the amount of 
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military-related data during training is not known. During inference, the searched classes are encoded using 
different prompts (T1, …, TN) and then the class is determined based on the distance between the text vectors 
and the image vector (I1), as shown in Figure 1. 

Figure 1: Pre-training concept of CLIP (left) and during inference (right). Tank images from Refs. [24], [25]. 

2.2 Prompt Engineering 
For our analysis, we do not train the model explained in Section 2.1 on any additional data, and only use it for 
inference. We use our image dataset to design appropriate text prompts that are as general as possible, in order 
to specify a certain class. Radford et al. [10] have shown in their evaluation of the CLIP approach that the 
accuracy of the models increases when a whole sentence is formed. For example, to detect a tank, it is more 
effective to use the text prompt “this is an image of a tank, a type of vehicle” instead of just using the word 
“tank”. This also avoids inaccuracies. For example, in ImageNet, there are the classes “construction cranes” 
and “animal cranes.” If we search for “crane” only, the result is ambiguous. A simple specification to get the 
desired class would be “a picture of the crane, a type of bird.” Our contribution is to engineer prompts for the 
desired classes in a military context in order to obtain the most accurate results possible. 

2.3 Evaluation Metrics 
During the analysis of the datasets, we report precision, recall, and the F1 score for the classification based on 
the text prompts. Due to the imbalance of the dataset, we mainly highlight the F1 score, which is the harmonic 
mean of precision and recall. 

For the extended evaluation of our results, we use the gScoreCAM [17]. The gScoreCAM algorithm is based 
on the idea of GradCAM [18] to provide a visual explanation of important regions within an image based on 
gradients. Regions that appear important to CLIP based on a caption are highlighted with heat maps. 

2.4 Military Image Dataset (Mid) 
For our prompt engineering analysis, we create a new dataset, called mid, which contains military and civilian 
vehicles, but also images without vehicles. The images are retrieved from different sources. Military vehicles 
are web scraped from Google Search, and the civilian vehicles come from both a Kaggle dataset [19] and 
Google Search. The non-vehicle images are extracted from the COCO 2017 validation subset [4], which is a 
web-scraped dataset as well. Here, care was taken to remove all motor vehicles to obtain a vehicle-free class. 

At the most detailed level, the dataset distinguishes between five classes: “no vehicle,” “civilian car,” “civilian 
truck,” “military truck,” and “Armored Fighting Vehicle (AFV)/tank.” For our analysis, an aggregated level is 
used. Here, there are 3,041 images of military vehicles, 977 civilian vehicles, and 1,475 non-vehicle images. 
Images have different resolutions and quality, yet if there is a vehicle in an image, it is usually in the center 
and fills much of the area. See Figure 2 for some examples. 
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Figure 2: Examples from the mid dataset. Military (Left), Civilian Vehicles (Center), and Images 
Without Vehicles (Right). 

2.5 Military Video Image Dataset (mvid) 
The military video image dataset (mvid) consists of images extracted from 10 different videos that all originate 
from YouTube. A more detailed overview with titles and links is provided in Appendix 1. There are five videos 
with military content and five with civilian content. The first five are labeled with the classes “military vehicle” 
and “no vehicle.” The remaining videos have the labels “civilian vehicle” and “no vehicle.” For both domains, 
there are three dash-camera-like videos (filmed from the vehicle) and two surveillance- camera-like videos 
that are directed to a street. The image quality of these images is significantly worse than in the mid dataset. 
Vehicles are not necessarily in the center of the image and are often small. Video streams are usually heavily 
pixelated, and edges are not very clear to detect. Moreover, surveillance cameras have a different angle to 
images from mid. In this real-world scenario, multiple objects can appear on each video frame. In our case, 
there are often multiple objects of the same type, but different classes are never mixed. 

3.0 PROMPT ENGINEERING FOR ZERO-SHOT CLASSIFICATION 

3.1 Prompt Engineering Analysis 
CLIP was pre-trained to identify whether images and text descriptions match. This can be used for multiclass 
zero-shot classification, where features from the CLIP image encoder and the CLIP language encoder are used, 
and their similarity is calculated. Yet a broad analysis of the military domain is missing. In this experiment, 
we use the mid dataset with the three classes: “military vehicle,” “civilian vehicle,” and “no vehicle,” and 
evaluate diverse prompt setups. 

We create different text prompts for each class and evaluate their performance for the positive class “military.” 
For each of the three classes, we start with a simple single word prompt (“word” in Table 1). Therefore, we 
use the terms “military vehicle,” “civilian vehicle,” and “everyday object,” respectively. Radford et al. [10] 
claim that it is often useful to phrase a whole sentence and add an auxiliary clause to the text description 
(“sentence”). Hence, we create the sentence template “an image of a/an {object}” for each class. Moreover, 
we add the clause “, a type of vehicle” to the end of the sentence for both vehicle classes. Lastly, we want to 
analyze how an ensemble of multiple prompts performs (“ensemble”). For this analysis, we create five 
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different prompts for each class and take the mean of the textual embeddings. In this setting, we also apply the 
sentence template with the auxiliary clause from before. The list of all prompts for the ensemble can be found 
in Table 2. Results are displayed in Table 1. 

Table 1: F1 Score, precision, and recall metric for classifying the “military vehicle” class in mid. 

Prompt F1 score Precision Recall 

word 0.9125 0.8585 0.9736 

sentence 0.9424 0.8934 0.997 

ensemble 0.9878 0.9888 0.9868 

Military Vehicle Civilian Vehicle No Vehicle 

Military vehicle, a type of vehicle Vehicle, a type of vehicle Everyday object 

Military truck or military tank, a type of 
vehicle 

Civilian vehicle, a type of vehicle Standard object 

Military lorry or panzer, a type of vehicle Car or truck, a type of vehicle Empty street without 
cars 

Armored fighting vehicles, a type of vehicle Normal vehicle, a type of vehicle Random object 

Military transporter or military tank, a type of 
vehicle 

Civilian car or civilian truck, a type of 
vehicle 

Empty street 

It can be observed that with increasing complexity of the prompts, the F1 score improves. With the very simple 
word prompt, recall is already very good, but the downside is that 15% of non-military vehicles were detected 
as “military.” However, the performance is already surprisingly good for a not-fine-tuned model. The 
introduction of a sentence template in combination with the auxiliary clause proves to be helpful for high 
precision and very good recall. The F1 score reaches 0.94 for this setting. The best results are achieved if 
several prompts are combined. With five prompts per class, we reach a 0.9895 F1 score. Both precision and 
recall show very good results. 

In this experiment, we illustrate that CLIP is able to classify military vehicles correctly from non-military 
vehicles (i.e., it has powerful zero-shot capability in the military domain). Good prompt engineering is 
important to receive competitive results. Also, simple single word prompts can already be sufficient. 

Table 2: Prompts used for the ensemble version. 

3.2 Color Analysis 
It might be possible that the color of objects plays an important role for classifying specific objects. In our dataset, 
civilian vehicles have many different colors, whereas military vehicles are usually brown, green, or sand colored. 
To prove or disprove the hypothesis, the previous experiment is repeated, but on grayscale images. If the 
hypothesis that CLIP is merely a color detector proves to be true, the performance should drop sharply. 

However, the experiment with grayscale images shows that performance differences are minimal. This is 
indicated in Table 3. Therefore, we can conclude that CLIP in this setting does not rely on colors for military 
vehicle detection. 
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Table 3: Prompt engineering analysis on grayscale images. 

Prompt F1 score Precision Recall 

word 0.9152 0.8624 0.9750 

sentence 0.9422 0.8941 0.9957 

ensemble 0.9825 0.9832 0.9819 

Table 4: Performance metrics for classifying the “military vehicle” or “civilian vehicle” 
respectively for each video in the mvid dataset. 

Name F1 score Precision Recall 
mil_sumy 1.0000 1.0000 1.0000 
mil_border 0.6471 0.9167 0.5000 

mil_sun 0.8986 0.8378 0.9688 
mil_tank 0.7473 1.0000 0.5965 
mil_cctv 0.7778 1.0000 0.6364 
civ_red 0.3810 0.4000 0.3636 

civ_seoulday 0.5625 0.9000 0.4091 
civ_seoulnight 0.6000 1.0000 0.4286 

civ_street 0.7857 1.0000 0.6471 
civ_ohiotraffic 0.8764 0.7800 1.0000 

4.0 ZERO-SHOT EVALUATION ON VIDEO STREAMS 
In this experiment, we want to apply the results of the prompt engineering to appropriate video streams. 
We analyze the classification performance per video on images extracted every three seconds. As described in 
Section 2.3, we inspect 10 videos, five from the military and five from the civilian domain. For each domain, 
we specify the target class as a positive class and hence report F1 score for “military vehicle” and “civilian 
vehicle,” respectively. 

The performance highly depends on the video stream analyzed and is displayed in Table 4. The F1 score on mvid 
ranges from 0.381 to 1.0. When we take a look at the five military videos, the worst result within the military 
domain is for mil_border, with an F1 score of 0.6471. During an in-depth analysis of all video frames, we 
discover that the object of interest is often at the very right corner of the video stream, and hence gets removed 
when CLIP’s image transform is applied. Using a transform without cropping (only quadratic resize), the 
F1 score rises to 0.8718, which is a reasonably good result. The mil_cctv video comes with poor resolution, 
which is due to the fact that the screen of a surveillance camera was filmed with a smartphone. Despite the very 
poor picture quality, the result of 0.7778 F1 score is good. When analyzing the mil_tank video, the F1 score 
achieves a score of 0.7473. The model has degrading performance if a tank is in the background and hence does 
not fill a significant area of the video frame. The performance can be increased by applying the focus area on the 
foreground. The mil_sun video also has a low resolution and is highly pixelated. The objects of interest are in 
the center of the image and thus in the recognizable area. This leads to a high F1 score of 0.8986. The mil_sumy 
video shows a street scene filmed from a car. Due to the format of the news provider, the region of interest also 
remains visible after the left/right areas were removed by CLIP’s pre-processing. In this video stream, all videos 
were correctly classified. To sum things up, the object of interest needs to cover a significant part of the image 
area. Neither camouflage nor blur due to moving objects appear to have a significant impact on the performance. 
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Table 5: Comparison of image pre-processing steps on mid dataset. Original setup with 
center-crop and version with resize-only. 

Prompt F1 score Precision Recall 

Preprocess Original Resize Original Resize Original Resize 

word 0.9125 0.9124 0.8585 0.8526 0.9736 0.9812 

sentence 0.9424 0.939 0.8934 0.8876 0.9970 0.9967 

ensemble 0.9878 0.9880 0.9888 0.9878 0.9868 0.9881 

When inspecting the civilian videos, the civ_red stream shows difficulties and only reaches an F1 score of 
0.381. However, on closer inspection, it can be noticed that vehicles are often on the edge and not in the 
detectable area of CLIP. The results for civ_seoulday and civ_seoulnight are intermediate (0.5625 and.6000). 
Both datasets are challenging because vehicles are often present at a far distance and thus occupy only a small 
visual area. A focus area in the foreground would be helpful for better results. civ_street is a typical street 
surveillance camera with a good resolution. It shows a very high precision, but the recall is intermediate 
(0.6471). The best results are achieved for the civ_ohiotraffic video. This video provides grayscale 
images only. Vehicles are far away but without noisy objects. Due to the angle of the camera, vehicles are 
captured from the front and the side, which increases the area of the object and shows the typical vehicle 
shapes. The F1 score is at 0.8764. 

5.0 DISCUSSION AND LIMITATIONS 

CLIP is a strong tool for image and video analysis. During our evaluation, we became aware of several issues 
to consider when using it in a production environment. 

5.1 Limitations on Video Streams 
We show that CLIP also works with low-resolution videos. However, the performance is not as high as in the 
previous analysis. It is best to have the object of interest in the center and foreground. For videos, it is 
recommended that a quadratic region of interest where vehicles usually fill a larger area is specified. Results 
for civilian vehicles are slightly worse. This might be due to the fact that during pre-training, civilian vehicles 
are not “that special” in image data and often appear in the surroundings of another main object. This is usually 
not the case with military content. In addition, CLIP does not regard temporal dependency. Since we have 
achieved our results only on single extracted frames, a post-processing extension would be necessary in 
practice. For this, the predictions on several frames would be used to obtain robust results. 

5.2 Data Pre-Processing 
During the CLIP pre-training, the only data augmentation used is a center quadratic crop on the images. During 
the evaluation on ImageNet and other datasets, this was not changed because the searched object appears 
mostly in the center of an image. Our analysis in Table 5 shows that the different proportions in only resized 
images result in minimal performance losses. As an alternative in other real-life settings such as phone camera 
videos or drone footage in aspect ratios other than square, square overlapping patches can also be entered into 
CLIP to further minimize this effect. 
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“An image of a dog.” “An image of a military vehicle.” 

Figure 4: Heatmap using gScoreCAM for two different prompts. 

5.3 Typographic Attacks 
During the experiments with various webcam videos, the Optical Character Recognition (OCR) capability 
from CLIP became apparent [10], [20]. However, CLIP can be easily tricked because of this capability [21]. 
An example of this can be seen in Figure 3. The dog in the center of the image is misrecognized as soon as a 
text is added that is very similar to a queried prompt. This is usually rare with traffic cameras, but of course, 
limits the transferability to social media videos where text or watermarks are often faded in. A possible 
pre-processing with the help of a text spotting component [22], [23] can help to increase the quality of the 
predictions in this setting. The exact position of the detected text can be used to perform targeted blur 
operations similar to Figure 3. 

Figure 3: Typographic attack on a non-vehicle image. 

According to the predicted probabilities, the presence of text in an image dramatically changes the prediction. 
Especially for the non-civilian/military class, a prompt targeting dogs was added. CLIP also shows a preference 
for the text within the image instead of the actual object. This can also be observed in the gScoreCAM 
visualization shown in Figure 4, where the correct areas in the image are detected depending on the prompt. 
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An example of such an attack is shown in Figure 5. A civilian truck with a neutral tarp may have sprayed 
writing on it to cause an automated detector based on CLIP to false alarm. Furthermore, the depiction of 
military vehicles on the tarpaulin may also lead to false prediction. 

Military 

Civilian 

No vehicle 

Class 

2.0% 

97.5% 

0.5% 

Civilian 

Military 

Civilian 

No vehicle 

Class 

96.0% 

4.0% 

0.0% 

Military 

Figure 5: Example of an attack on an image with a civilian truck. 

5.4 Prompt Selection and Bias 
The conducted research highlights the following recommendations during the selection of suitable prompts. 
Based on templates like “an image of a/an {object}” the performance during inference rises as opposed to 
a single “{object}” prompt. Additionally specifying “an image of a/an {object}, a type of {object category}” 
boosts performance as well, even if keywords occur twice in the sentence. 

Due to the unknown pre-training data of CLIP, some prompts can mislead the model and therefore lead to 
unwanted bias. For example, the word “tank” has the following meanings: a type of military vehicle or a type 
of container. Unfortunately, we cannot evaluate which type of tank is more common in CLIP’s pre-training 
data. Hence, for ambiguous words, it is useful to add an adjective or another type of description. We choose 
to use the term “military tank” in our analysis to reduce bias towards the term “container tank.” 

6.0 CONCLUSION 

In our work we have analyzed the zero-shot capabilities of CLIP in the military domain. We evaluated prompts 
of increasing complexity and have shown that, with an ensemble of five prompts, an almost perfect detection for 
military vehicles can be achieved on our mid dataset. Furthermore, the use of grayscale images only results in 
insignificant performance loss. There are special characteristics that must be taken into account when applying 
CLIP. Especially for surveillance cameras or dash cams, it is important to know that background objects are very 
hard to detect. Hence, it is useful to specify a region of interest where objects in the foreground usually appear. 
Without this process, an F1 score between 0.381 and 1.0 was achieved on our datasets. If no focus area is 
specified, it is important to consider that the edges of an image are cropped during pre-processing. Moreover, we 
have shown that due to the pre-training objective, CLIP can be fooled by written statements in the images. This 
is hardly a problem with surveillance cameras, but it can be a challenge when analyzing data from social media. 

CLIP is known to be a powerful model for visual and textual applications. There is ongoing research 
investigating the capabilities of this deep learning model. Our results show that a malicious actor can use CLIP 
to screen masses of traffic surveillance data and videos from public sources without the need for training 
specifically on military vehicle datasets. Doing so publicly available open-source models can be used by 
reconnaissance units to analyze troop and logistic movement. From a military perspective, it is vital to have 
an overview over such movements. Automated analysis without – or at least with little – human control, allows 
hundreds or thousands of video camera streams to be analyzed and to supply command and control with the 
results of the analysis. The availability of this information can lead to cognitive superiority on the battleground. 
The approach shown here demonstrates that public models and intelligent prompt engineering without the need 
of time-consuming data collection and model training can be used to create such software solutions for the 
military reconnaissance sector. 
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Appendix 1: DETAILS OF MVID 

Table A1-1: Name, title and url for videos in mvid. 

Name Title Example URL 

mil_sumy Ukrainian citizen 
confronts 
Russian soldiers 
after tank runs 
out of fuel 

 

https://www.youtube.com/watch?v=1
4gVDF2b1vA  

mil_border Russian video 
shows troops 
entering Kyiv 
region 

 

https://www.youtube.com/watch?v=f
Wc-gtblvOU  

mil_sun Russian military 
convoy moves 
through Kharkiv 
region, littered 
with destroyed 
tanks  

https://www.youtube.com/watch?v=
BlS8XWEhZdM  

mil_tank Russian tanks 
drive through 
town in Kyiv, 
Ukraine  

 

https://www.youtube.com/watch?v=
F5tpehGgN_Q  

mil_cctv CCTV shows 
Russian tanks 
entering Ukraine 
from Belarus and 
Crimea 

 

https://www.youtube.com/watch?v=
wfUKVsjhclY  

civ_red Red light camera 
flash 

 

https://www.youtube.com/watch?v=b
Yw56iTqeKU  

civ_seoulday ASMR Highway 
Driving in 
the Rain – Day 
to Night (No 
Talking, No 
Music) – Seoul 
to Daegu, Korea 

 

https://www.youtube.com/watch?v=
Dwswey-GqQc&t=6492s  

https://www.youtube.com/watch?v=14gVDF2b1vA
https://www.youtube.com/watch?v=14gVDF2b1vA
https://www.youtube.com/watch?v=fWc-gtblvOU
https://www.youtube.com/watch?v=fWc-gtblvOU
https://www.youtube.com/watch?v=BlS8XWEhZdM
https://www.youtube.com/watch?v=BlS8XWEhZdM
https://www.youtube.com/watch?v=F5tpehGgN_Q
https://www.youtube.com/watch?v=F5tpehGgN_Q
https://www.youtube.com/watch?v=wfUKVsjhclY
https://www.youtube.com/watch?v=wfUKVsjhclY
https://www.youtube.com/watch?v=bYw56iTqeKU
https://www.youtube.com/watch?v=bYw56iTqeKU
https://www.youtube.com/watch?v=Dwswey-GqQc&t=6492s
https://www.youtube.com/watch?v=Dwswey-GqQc&t=6492s
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Name Title Example URL 

civ_seoulnight ASMR Highway 
Driving at Night 
(No Talking, 
No Music) – 
Busan to Seoul, 
Korea  

https://www.youtube.com/watch?v=n
ABR88G_2cE&t=11093s  

civ_street Village of Tilton 
– Traffic Camera 

 

https://www.youtube.com/watch?v=5
_XSYlAfJZM  

civ_ohiotraffic Ohio Traffic 
Camera Captures 
Tornado on 
Video 

 

https://www.youtube.com/watch?v=
PmrSOPMkfAo  

 

https://www.youtube.com/watch?v=nABR88G_2cE&t=11093s
https://www.youtube.com/watch?v=nABR88G_2cE&t=11093s
https://www.youtube.com/watch?v=5_XSYlAfJZM
https://www.youtube.com/watch?v=5_XSYlAfJZM
https://www.youtube.com/watch?v=PmrSOPMkfAo
https://www.youtube.com/watch?v=PmrSOPMkfAo
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