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ABSTRACT 
In this paper, we study a scenario in which a large number of individuals in various levels of medical distress 
are stranded at a remote location, such as in the Arctic, and must be evacuated. Set within this context, 
we examine a multi-domain operation in which the evacuation of individuals occurs via one of two ways, either 
by helicopter or by ship, each with their own capacity constraints. The aim of this research is to determine 
a decision policy whose objective is to maximize the number of survivors. This is achieved by seeking a policy 
that throughout the operation effectively coordinates the selection of those individuals to be evacuated via 
helicopter and those to be evacuated via ship. Our contributions are twofold. First, we formulate the 
multi-domain mass evacuation operation as a Markov Decision Process. Second, due to the fact that the curse 
of dimensionality renders exact methods not applicable, we employ an Artificial Intelligence framework, 
namely, Reinforcement Learning (RL), also known as Approximate Dynamic Programming (ADP) within 
operations research, to learn a near-optimal policy. Using a value function approximation based on state 
aggregation, we design an ADP algorithm to learn a policy within the context of a representative planning 
scenario. We then apply this policy across a range of test scenarios and compare the outcomes to those 
achieved using non-coordinated benchmark policies. Although our learned policy does not outperform all 
benchmarks, our results demonstrate how Artificial Intelligence may be used to evaluate candidate policies 
and provide decision support in multi-domain operations. 

1.0 INTRODUCTION 

Over the last few decades, the decrease in Arctic sea ice has been substantial, particularly during the summer 
seasons [1]. Although further reduction depends on many factors, such as climate change [2], activity in the 
region is expected to increase [3], [4]. In particular, if the ability to navigate through the Northwest Passage, 
Northern Sea Route, and Transpolar Sea Route (see the left panel of Figure 1) become commonplace, then 
their use for both trade and the transport of individuals, specifically cruise ships, will follow ‒ although not 
without its challenges [5]. While the Polar Code sets out goals and functional requirements for ships operating 
in the region [6], when disaster strikes it remains the responsibility of government departments and agencies 
to conduct the necessary operations, including Search and Rescue (SAR). This is evidenced by recent exercises 
conducted by Arctic nations, such as the SARex exercise conducted near Spitzbergen, Norway in 2016, which 
aimed to assess the effectiveness of safety equipment during a mass evacuation after a cruise ship sinking [7], 
and NANOOK-TATIGIIT 21 conducted by the Canadian Armed Forces (CAF), which aimed to test an 
“interagency response to a major maritime incident requiring a Mass Rescue Operation along the eastern coast 
of Baffin Island” ([8], p. 30). 

In such Major Maritime Disaster (MAJMAR) evacuation operations, the number of individuals that survive is 
influenced by a range of factors [9], including, but not limited to: response time; environmental conditions 
[10], [11]; the number of passengers, crew, and their medical conditions [12]; infrastructure [13], [14], [15]; 
and the decision policies used during the operation [16]. In particular, the latter study highlighted that when 

mailto:mark.rempel@forces.gc.ca
mailto:%20nicholi.shiell@forces.gc.ca


Using Reinforcement Learning to Provide 
Decision Support in Multi-Domain Mass Evacuation Operations 

21 - 2 NATO STO REVIEW FALL 2023 

considering an individual’s medical condition, the decision policy ‒ “a rule (or function) that determines a 
decision given the information available” (Ref. [17], p. 221) ‒ used to determine the order in which individuals 
are evacuated, may have a significant impact on the number of survivors. With this in mind, this study 
examines a Multi-Domain Operation (MDO) in response to a MAJMAR scenario, in particular a cruise ship 
carrying up to 2,000 individuals, that occurs in a remote location and explores the effectiveness of evacuation 
decision policies given limited resources and uncertainty regarding an individual’s medical condition over 
time.1 It seeks to find a decision policy whose objective is to maximize the number of survivors by coordinating 
the selection of individuals to be evacuated across multiple domains. 

Figure 1: Arctic multi-domain evacuation. Left panel: Example Arctic Sea routes (actual routes 
may vary). Source: Basemap is taken from https://armap.org/web-services/. Right Panel: 
Multi-domain evacuation via air and sea. 

Beyond the defence domain, the allocation of scarce resources to maximize the number of survivors of a mass 
evacuation scenario has been studied in an array of contexts, including blunt trauma [19], mass casualty events 
[20]-[25], healthcare facility evacuation [26], and aeromedical evacuation of an international traveller [27]. 
Many of these studies tend to focus on the evacuation of a small number of individuals, such as 12 in Ref. [25] 
and 100 in Ref. [21]; assume that each individual requires the same resources (e.g., a stretcher in an 
ambulance); and conduct the evacuation in a single domain (e.g., land or air). When compared to a MAJMAR 
scenario such as described above, these scenarios are relatively small. While scenarios that involve a very large 
number of individuals have been studied, such as several thousand during the evacuation of the New Orleans 
Airport during Hurricane Katrina [28] and over 100,000 during a major earthquake in Istanbul [29], these tend 
to be set in populated areas with access to a large number of resources. Thus, outside the defence domain there 
appear to be few, if any, studies that focus on finding decision policies in large-scale evacuation operations in 
which resources, in particular transport, are limited. 

Within the defence domain, several studies have examined the medical evacuation of individuals. For example, 
Keneally et al. [30] studied aeromedical helicopter dispatch policies in a combat environment, constructed 
a Markov Decision Process to describe a scenario, and used a value iteration algorithm to develop an optimal 

1 Within the NATO context, as of 29 July 2022, the working definition of a Multi-Domain Operation was given as 
“the orchestration of military activities, across all domains and environments, synchronized with non-military activities, to 
enable the Alliance to deliver converging effects at the speed of relevance” [18]. 

https://armap.org/web-services/
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policy to maximize the number of soldiers saved. Jenkins et al. [31] examined the military medical evacuation 
location-allocation problem and designed an integer programming model to determine the location and number 
of assets required over multiple phases of a military deployment where the model’s objectives were to 
maximize the total expected demand covered, minimize the maximum number of locations in any phase, and 
minimize the number of times locations needed to be moved between phases. Robbins et al. [32] also 
investigated how best to dispatch aeromedical assets in response to calls for service, but employed an 
Approximate Dynamic Programming (ADP) based approach to seek a near-optimal policy. While such studies 
are related to the aforementioned scenario, to the best of our knowledge within the defence-related open 
literature, only Rempel et al. [16] seek a policy that determines the order in which individuals are to be 
evacuated. In addition, as Rempel et al. [16] and Robbins et al. [32] demonstrate, when seeking policies in 
medical evacuation scenarios, Artificial Intelligence (AI) frameworks such as ADP, known as Reinforcement 
Learning (RL) in computer science, may be useful to determine near-optimal decision policies as exact 
methods are not applicable due to the curse of dimensionality. 

The application of these AI frameworks within MDOs is sparse. A query of the Web of Science on 11 May 
2022 using the search term “multi-domain operation” and (“artificial intelligence” or “reinforcement learning” 
or “approximate dynamic programming”) yielded three relevant results that focus on the security and 
trustworthiness of AI [33], how human decision-making can be integrated with AI [34], and predicting who is 
responsible for terrorist incidents [35]. A similar query of Google Scholar returned 62 results, including those 
that focus on the need to share data [36], the need to integrate AI into the battle management process [37], and 
how RL may be used for autonomous strategic manoeuvre and disruption [38]. Given these results, and the 
recent review of ADP being applied for decision support in a military context [39], to the best of our knowledge 
using RL/ADP to seek near-optimal decision policies in MDOs is either not widespread or non-existent in the 
open literature. 

Our contributions are twofold. First, we formulate the multi-domain mass evacuation operation as a Markov 
Decision Process (MDP). Second, due to the problem’s size and that the curse of dimensionality renders exact 
methods not applicable, we employ ADP to learn a near-optimal evacuation decision policy with the objective 
of maximizing the number of survivors. Using a Value Function Approximation (VFA) based on 
state-aggregation, we design an ADP-based algorithm to learn a policy within the context of a representative 
planning scenario. We then apply this policy across a range of test scenarios and compare the outcomes to 
those achieved using non-coordinated benchmark policies. Although our learned policy does not outperform 
all benchmarks, our results demonstrate how Artificial Intelligence may be used to evaluate candidate policies 
and provide decision support in multi-domain operations. 

In addition to these contributions, this article extends our previous study [16] in three ways. First, it includes 
an MDO response to the situation rather than only an air domain response. Second, it expands the uncertainty 
considered by capturing the possibility of an individual’s health degrading multiple triage categories between 
sequential decision epochs. Lastly, rather than using a one-to-one lookup table within the VFA, this study 
employs a state-aggregation approach similar to that found in Ref. [25]. 

The remainder of this article is organized as follows. The problem definition section describes the mass 
evacuation problem considered and the MDO that occurs in response. The methodology section defines the MDP 
formulation and the ADP formulation employed to search for a near-optimal decision policy. The computational 
results section presents computational results for a series of experiments, including the comparison of the 
ADP-generated policy to benchmark policies. Lastly, a conclusion and directions for future research 
are provided. 
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2.0 PROBLEM DEFINITION 

The scenario considered in this article is based on the MAJMAR scenario described in Ref. [15]. The scenario 
described in Ref. [15] (pp. 6-18) requires the CAF to: 

1) Deploy personnel, materiel, and multiple aircraft to a Forward Operating Location (FOL); 

2) Transport individuals by helicopter from an evacuation site to an FOL; and 

3) Transport individuals via fixed-wing aircraft from the FOL to a southern location. 

In a recent paper, Rempel et al. [16] considered a portion of this scenario, in particular the movement of 
individuals from the evacuation site to the FOL, and searched for a near-optimal decision policy regarding 
evacuation via helicopter. This paper extends these two previous works by considering the response as an 
MDO. Specifically, the scenario considered which, like [16], focuses on the movement of individuals from the 
evacuation site to the FOL, allows for individuals to be evacuated through one of two ways, either by helicopter 
(such as those operated by a nation’s military) or by ship (such as those operated by a nation’s coast guard). 
Within this context, the aim is to determine a decision policy that coordinates the efforts of these two 
evacuation routes to collectively maximize the expected total number of survivors. The remainder of this 
section describes the representative scenario used in this article. 

A cruise ship carrying 2,000 individuals, including passengers and crew hereafter described collectively as 
individuals, is transiting the Northwest Passage during August (such as the Crystal Serenity did in 2016 with 
approximately 1,000 passengers and 600 crew [39]). An accident, such as hitting an iceberg or engine failure, 
occurs at a location along the route that puts the ship in a category where the operational focus is on evacuation 
[40]. Within much of the Northwest Passage route the Canadian Coast Guard (CCG) is the lead agency to respond 
to this type of incident; however, while one of their ships is in the area, they do not have the capacity to evacuate 
2,000 individuals. Given this situation, the CAF are requested to support the evacuation operation. 

Within the first few hours, the individuals move from the accident location to an evacuation site on a nearby 
shore via the cruise ship’s lifeboats and, if possible, with the assistance of those living in nearby Northern 
communities.2 Concurrently, among other resources and personnel, the CAF deploy one helicopter, and set up 
an FOL, labelled the CAF FOL, that has a suitable airfield and is within the helicopter’s operational range of 
the evacuation site. Likewise, the CCG divert their ship in the area to the evacuation site and identify a second 
FOL, labelled the CCG FOL, to which their ship transports individuals. Lastly, SAR technicians are deployed 
to the evacuation site to provide immediate medical care. The flow of the operation is depicted in the right 
panel of Figure 1. 

Once the helicopter has arrived at the CAF FOL, SAR technicians have arrived at the evacuation site, and the 
CAF FOL is ready to receive individuals, the helicopter begins the following cycle: fly to the evacuation site; 
land and load living individuals (those deceased are left on site and will be recovered later); fly to the CAF FOL 
to unload individuals; fly to the evacuation site; and so on. A similar cycle occurs in parallel with the CCG 
ship: transit to the evacuation site; load living individuals; transit to the CCG FOL and unload individuals; 
return to the evacuation site; and so on. These cycles continue until all living individuals have arrived at either 
of the FOLs. In addition, the following assumptions are made: one helicopter may land at a time at the 
evacuation site (when multiple helicopters are considered in Section 4.0); the weather is clear for the duration 
of the operation; there are no significant aircraft or ship breakdowns; sufficient fuel is available at the CAF 
FOL to refuel the helicopters; and the ship has sufficient fuel to operate for the duration of the operation. These 

 
2 Based on Safety of Life at Sea guidelines [41], the maximum time for all survival craft to be launched with all individuals is 

30 minutes from the time the abandon ship signal is given. This study assumes that the signal to abandon is not immediately 
given and includes the transit time to shore and the time to disembark the lifeboats. Thus, a few hours to reach the evacuation 
site is deemed reasonable. 
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assumptions are unlikely to be realized in practice; however, they result in an idealized scenario that may be 
used as a baseline on which to compare the impact of changes in the assumptions, equipment, number of 
individuals, and so on, in future studies. 

At the evacuation site, the cruise ship’s crew initially classify each of the individuals based on their medical 
condition, to one of the five triage categories ‒ white, green, yellow, red, and black ‒ as defined in Table 1. 
The classification of live individuals into four triage categories (black represents those deceased) based on 
medical need, as opposed to two categories based on capacity requirements, is consistent with the scenario 
described in previous work [15], [16]. The initial distribution of individuals is inspired by the Costa Concordia 
disaster, which resulted in 32 deaths and 64 injuries. Given this information, an initial count of 100 injured 
was deemed reasonable given a cold, remote, and isolated environment. While at the evacuation site, each 
individual’s health, and hence their triage category, deteriorates over time (i.e., white → green, green → 
yellow, etc.). Given no intervention, all individuals will transition to the black triage category, that is, they 
perish, as depicted in Figure 2. 

Table 1: Properties of the triage categories and initial count. See Ref. [17] for details. 

Category Treatment Initial Count Stretcher? Mean Time [h] 

White None 1900 No 120 

Green Routine 40 No 48 

Yellow Early 30 Yes 8 

Red Immediate 30 Yes 1.5 

Black Deceased 0 Yes - 

 

Figure 2: Number of individuals in each triage category as a function of time with no intervention. 
Initial distribution is 1,900 (white), 40 (green), 30 (yellow), 30 (red), and zero (black). Hour zero is 
defined as when the individuals have arrived at the evacuation site and the ship’s crew have 
assessed the individuals. Category transition times follow an exponential distribution with mean 
times listed in Table 1. 
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Given that an individual’s health may be influenced by many factors (e.g., cause of injury, age, medical 
history, etc.), neither their conditions nor their transitions between categories are modelled in detail. Rather, 
the transition time between two adjacent triage categories is assumed to follow an exponential distribution 
with mean times listed in the far right column of Table 1, consistent with previous work [15], [16].3 
These values are based on consultations with a medical professional and are to be interpreted as “rule-of-thumb 
estimates of how long a person would stay in a particular triage state under various environmental conditions 
and levels of care” ([15], p. 16). For example, the transition time from the red to black triage category is 
modelled after an individual having a heart attack (i.e., the American Heart Association recommends fewer 
than 90 minutes from the symptoms begin to the opening of the blocked artery). The transition times are the 
greatest source of uncertainty within the scenario, and their modification may have significant impact on the 
expected number of lives saved in the results presented herein. Further details may be found on pp. 16-17 
of Ref. [15]. 

Given this triage model and mean transition times, the evacuation of individuals is a time-critical problem. The 
total number of individuals evacuated is non-deterministic as a result of an individual’s transition between triage 
categories.4 Given the scenario, its inherent uncertainties, and the decision policy sought ‒ which individuals are 
loaded onto the helicopter or ship for transport to the respective FOL ‒ this problem is aptly described as a 
sequential decision-making problem under uncertainty. Section 3.0 models this sequential decision-making 
problem as an MDP, which is “sufficiently broad to allow modelling most realistic sequential decision problems” 
(Ref. [42], p. 2). Specifically, we employ the modelling framework and notation suggested by Powell (Ref.[11], 
Ch. 6), as this allows greater flexibility and clearer representation of the uncertainty than the notation presented 
in Ref. [42]. Following the description of this model, Section 3.2 proposes an ADP formulation to learn a near-
optimal decision policy that aims to maximize the expected total number of survivors. 

3.0 METHODOLOGY 

3.1 Markov Decision Process Formulation 

3.1.1 State Space 

Let the set of triage categories be represented by 𝒯𝒯 = {w, g, y, r} ‒ the black triage category is not included, 
since the deceased are recovered at a later time. Let the set of locations ℒ = {e, f H, f S} represent the evacuation 
site, the FOL that receives individuals via helicopter, and the FOL that receives individuals via ship, 
respectively. Lastly, let the set 𝒜𝒜 = 𝒜𝒜H ∪ 𝒜𝒜S represent the helicopters and ships involved in the scenario, 
where 𝒜𝒜H is the set of helicopters that travel between the evacuation site and f H and 𝒜𝒜S is the set of ships that 
travel between the evacuation site and f S. It is assumed that all helicopters have identical attributes, as do the 
ships (when multiple of each are considered as in Section 4.0). The initial state S0 is listed in Table 2 and 
contains parameters that are constant throughout the scenario. The MDP has a finite horizon, where the final 
decision epoch is the event in which no living individuals are remaining at the evacuation site. This event is 
labelled as K, and given the stochastic nature of the scenario the time at which it occurs, is variable. 

The state variable is then defined as 

𝑆𝑆𝑘𝑘 = (𝜏𝜏𝑘𝑘 , 𝑒𝑒𝑘𝑘 ,𝜌𝜌𝑘𝑘), (1) 

 
3 Using an exponential distribution to model the deterioration of individuals is effective for our problem for two reasons. First, 

it has been previously used in studies of priority assignment in emergency response [21] and, second, it requires no knowledge 
of how long an individual has been in a given triage category, just how long since their health was last sampled.  

4 While other uncertainties exist, such as breakdowns, refuelling and maintenance time, etc., these are outside the scope of 
this study. 
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where τk is the system time recorded during the kth event, ek is an integer event code that corresponds to  
Table 3, and ρk = (ρk,t) t ∈ 𝒯𝒯 where ρk,t is an integer representing the number of individuals in each triage 
category t at the evacuation site. The inter-transition time listed in Table 3 includes the time to load individuals, 
transit to the FOL, unload individuals, and return to the evacuation site. 

Table 2: Initial state S0 are static parameters that are constant throughout the scenario. 

ℒ 𝒜𝒜  

Evac (e) CAF FOL (f H) CCG FOL (f S) 𝒜𝒜 H 𝒜𝒜 S Description 

me - - - - 
Vector of mean time (hrs) for an 
individual to deteriorate from a triage 
category 

- - - hH hS Total capacity of individuals 

- - - ΔH ΔS Vector of capacity consumed by each 
triage category 

ηe ηf H ηf S - ηS Initial location  
- - - φH - Maximum one-way transit time 

Table 3: Transitory events that trigger a state transition. 

Event (ek) Description Inter-Transition Time 

1 Helicopter arrives at evacuation site Return Time 

2 Ship arrives at evacuation site Return Time 

3.1.2 Decision Space 

When a decision is made, it is made in response to a helicopter or ship arriving at the evacuation site and 
triggering event k. Let xk = (xkt )∀ t∈ T where xkt is an integer representing how many people are loaded from 
category t at the evacuation site onto the helicopter or ship that is onsite. A loading decision, be it for the 
helicopter or ship, is constrained by the space available onboard and the number of individuals at the 
evacuation site. For a helicopter, these constraints are stated as 

�𝑥𝑥𝑘𝑘𝑘𝑘∆𝑡𝑡𝐻𝐻≤ ℎ𝐻𝐻 
𝑡𝑡∈𝒯𝒯

 (2) 

and 

𝑥𝑥𝑘𝑘𝑘𝑘 ≤  𝜌𝜌𝑘𝑘𝑘𝑘,∀t ∈ 𝒯𝒯 (3) 

Similar constraints exist for a ship. 

3.1.3 State Transition 

The state transition function is defined as Sk+1 = SM(Sk; xk;Wk+1), where Wk+1 is exogenous information (i.e., the 
uncertainty within the decision problem), that arrives after decision xk is made. Wt+1 is given as 

𝑊𝑊𝑘𝑘+1 = �𝛿̂𝛿𝑘𝑘+1,𝑡𝑡, 𝑒̂𝑒𝑘𝑘+1, 𝜏̂𝜏𝑘𝑘+1� (4) 
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The vector 𝛿𝛿𝑘𝑘+1,𝑡𝑡 represents the change in the number of individuals in each triage category t that follows the 
dynamics described in the previous section, 𝑒̂𝑒𝑘𝑘+1 is the event that triggers the transition to state Sk+1, and 𝜏̂𝜏𝑘𝑘+1 
is the inter-transition time to the next event k+1. 

3.1.4 Contribution 

At each event a contribution is received, which is the number of individuals loaded onto the helicopter or ship. 
The contribution function is given as 

𝐶𝐶(𝑥𝑥𝑘𝑘) = ∑ 𝑥𝑥𝑘𝑘𝑘𝑘 𝑡𝑡∈𝒯𝒯 . (5) 

3.1.5 Objective Function 

Given this MDP, the problem is to find the best decision policy. Let Xπ (Sk) be a decision policy that determines 
how many individuals from each triage category are loaded onto either a helicopter or ship for each state 
Sk ∈ S. To determine the optimal policy π∗ from the class of policies (Xπ (Sk))π∈Π, the objective function is 
defined as 

max
π∈Π 

𝔼𝔼π �∑ 𝐶𝐶�𝑋𝑋π(𝑆𝑆𝑘𝑘)�|𝑆𝑆0𝒦𝒦
𝑘𝑘=0 �, (6) 

where 𝔼𝔼 π indicates the expectation over the chosen policy. The optimal policy is found via Bellman’s equation 

𝑉𝑉(𝑆𝑆𝑘𝑘) = max(𝐶𝐶(𝑋𝑋π(𝑆𝑆𝑘𝑘) + 𝔼𝔼[𝑉𝑉(𝑆𝑆𝑘𝑘+1)|𝑆𝑆𝑘𝑘,𝑋𝑋π(𝑆𝑆𝑘𝑘)]) (7) 

using the decision function 

𝑋𝑋π(𝑆𝑆𝑘𝑘) =  argmax
𝑥𝑥𝑘𝑘∈𝒳𝒳𝑘𝑘(𝑆𝑆𝑘𝑘)

(𝐶𝐶(𝑥𝑥𝑘𝑘) + 𝔼𝔼[𝑉𝑉(𝑆𝑆𝑘𝑘+1)|𝑆𝑆𝑘𝑘,𝑥𝑥𝑘𝑘]), (8) 

where 𝒳𝒳k(Sk) captures the constraints that define the feasible region. 

 

Figure 3: Example of a sequence of decisions as an MDP with the Post-Decision State Variable 
(PDSV). At each decision epoch k, a vector of decisions xk is selected via a decision policy Xπ(Sk). 

3.2 Approximate Dynamic Programming Formulation 
The classic approach to finding an optimal decision policy is to solve Bellman’s optimality equation via a 
Dynamic Programming algorithm, such as value iteration or policy iteration [43]. However, there are three 
factors, collectively known as the curses of dimensionality, which prevent the computation of an optimal policy 
in large-scale problems ([17], pp. 5-6): size of the state space S, size of the decision space 𝒳𝒳, and size of the 
outcome space 𝒲𝒲. When any of these become too large, it becomes too computationally expensive to 
determine an optimal policy. 

The multi-domain evacuation problem suffers from all of these curses. For example, the scenario description 
in Section 2.0 states there are 1,900 individuals in the white triage category at S0. Given the transition model 
between triage categories, after the first loading decision is made, any number of these individuals may 
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transition to any lower category, including the black category. This set of transitions alone creates a very large 
state space ‒ if zero individuals transition to the black category, then there are ∼1.1 billion ways in which these 
1900 individuals may transition to the four categories captured in the state variable; if one individual transitions 
to the black category then there are an additional ∼1.1 billion potential transitions; and so on. Although the 
number of possible transitions reduces as the scenario proceeds, the size of the state space means that it is not 
feasible to solve for an optimal policy via Dynamic Programming in a reasonable amount of time. 

ADP aims to overcome the curses of dimensionality, albeit at the cost of producing a near-optimal policy rather 
than one that is optimal. To do so, it employs the concept of the Post-Decision State Variable (PDSV), labelled 
as 𝑆𝑆𝑘𝑘𝑥𝑥. It also approximates the value function V(Sk+1) by 𝑉𝑉(𝑆𝑆𝑘𝑘𝑥𝑥), here labelled as the Approximate 
Value Function (AVF), which is a function of the PDSV rather than the state variable. The PDSV describes 
the state of the system after a decision xk has been applied but before the stochastic processes occur and the 
associated exogenous information Wk+1 has arrived. As depicted in Figure 3, this allows the transition function 
SM(Sk, xk, Wk+1) to be broken into two steps, 

𝑆𝑆𝑘𝑘𝑥𝑥 = 𝑆𝑆𝑀𝑀,𝑥𝑥(𝑆𝑆𝑘𝑘,𝑥𝑥𝑘𝑘), (9) 

𝑆𝑆𝑘𝑘+1 = 𝑆𝑆𝑀𝑀,𝑤𝑤(𝑆𝑆𝑘𝑘𝑥𝑥,𝑊𝑊𝑘𝑘+1), (10) 

where Equation (9) is deterministic and Equation (10) is stochastic. The result is that the expectation operator 
moves outside of the max operator in Equation (7) and the decision problem in Equation (8) becomes a 
deterministic optimization problem, in this case given as 

𝑋𝑋π(𝑆𝑆𝑘𝑘) =  argmax
𝑥𝑥𝑘𝑘∈𝒳𝒳𝑘𝑘(𝑆𝑆𝑘𝑘)

�𝐶𝐶(𝑥𝑥𝑘𝑘) + 𝑉𝑉(𝑆𝑆𝑘𝑘𝑥𝑥)� (11) 

In our recent study that explored the use of ADP to seek a near-optimal helicopter loading decision policy in 
a mass evacuation scenario, we compared policies generated using three different PDSVs [16]: the number 
of individuals in the red category at the evacuation site; a two-dimensional vector that represented the number 
of individuals that needed a stretcher and did not need a stretcher; and a four-dimensional vector that 
represented the number of individuals in each triage category. Our results indicated that a policy based on the 
four-dimensional PDSV performed the best, outperforming a benchmark Policy Function Approximation 
(PFA) by 42 ± 3%. Based on these results, in this study we use the four-dimensional PDSV, specifically  
𝑆𝑆𝑘𝑘𝑥𝑥 = [ρk,w,ρk,g, ρk,y,ρk,r]. 

Regarding the AVF 𝑉𝑉(𝑆𝑆𝑘𝑘𝑥𝑥), there are a variety of options from which to choose. These options may be grouped 
into three strategies [17]: a lookup table that returns a discrete value for each PDSV; parametric representation, 
which is an analytical function that involves a vector of tuneable parameters θ and a set of basic functions 
(φf (𝑆𝑆𝑡𝑡𝑥𝑥) and f ∈ ℱ) where ℱ is a set of features based on information from the PDSV; and nonparametric 
representation, which builds local approximations based on observations, such as with neural networks, kernel 
regression, k-nearest neighbour, etc. Similar to our previous study [16], in this study we use a lookup table 
strategy; however, rather than a one-to-one lookup table, we employ state aggregation, which is a “simple form 
of generalizing function approximation in which states are grouped together, with one estimated value 
(one component of the weight vector w) for each group” ([44], p. 203). Our approach divides the state space 
into multiple overlapping encodings (see Figure 4 for examples of 2d encodings). This is accomplished by 
dividing each of the four axes of the state space into n bins, with the ith axis containing ni bins. A set of four 
bins {nw, ng, ny, nr} defines an encoding, and a set of encodings defines the state aggregation scheme. 
The number of bins in the jth encoding, Nj, is given by Equation (13), and the total number of bins in a state 
aggregation scheme, |𝒢𝒢|, where 𝒢𝒢 is the set of all bins, is given by Equation (14). 
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𝑁𝑁𝑗𝑗 = �𝑛𝑛𝑖𝑖
𝑖𝑖

 (13) 

|𝒢𝒢| = �𝑁𝑁𝑗𝑗
𝑗𝑗

 (14) 

Given this approach, the AVF is defined as 

𝑉𝑉(𝑆𝑆𝑘𝑘𝑥𝑥) = �𝑤𝑤𝑔𝑔𝑦𝑦𝑔𝑔
𝑔𝑔∈𝒢𝒢

 (15) 

where yg is an indicator variable: 1 if the PDSV resides within gth bin of the scheme and 0 otherwise. 

 

Figure 4: Example state aggregation scheme over a 2D state space. In this example, 
two encodings are defined using asymmetric bins along each of the state space axes. The black 
dot represents a PDSV in the state space, the filled in bin for each encoding represents the ym, 
which would be unity, and empty bins have a ym of zero. 

4.0 COMPUTATIONAL RESULTS 

This section describes how a near-optimal policy for the multi-domain evacuation problem described by the 
MDP outlined in Section 2.0 was generated using the state aggregation scheme outline in Section 3.2 and the 
Approximate Value Iteration (AVI) learning algorithm listed in Algorithm 1. The ADP-generated policy was 
then compared to four benchmark policies to determine which of the five performed best. A policy’s 
performance is defined as the average number of individuals that have been successfully evacuated by the end 
of the MDP when the policy is followed. To estimate this quantity, the MDP was simulated many times, 
recording the number of individuals evacuated after each simulation. To determine the statistical significance 
of each policy’s performance, the mean and variance of the distributions were computed and used to compare 
the performance of policies. The learning and policy evaluation stages were performed on a 2.5 GHz i5-
10300H quad core processor with 16 GB of memory running Ubuntu 20.04. The source code was written in 
C++11 and compiled using the g++ 9.3.0v compiler with optimization level O3. 

During both the learning and policy evaluation stages, the MDP parameters describing the evacuation 
remained the same. The initial population distribution and their mean transition times correspond to the values 
listed in Table 1. The helicopter and ship used to evacuate the individuals are described by: total capacity hH/hS, 
initial arrival time i, return time r, and a vector of capacity requirements ∆H/∆S. The values for these parameters 
are summarized in Table 4. 
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Table 4: Helicopter and ship parameters. 

Type hH/hS i r ΔH/ΔS 

Helo 10 48 3 [1,1,3,3] 

Ship 50 4 16 [1,1,3,3] 

There are three parameters for the learning algorithm (see Algorithm 1) which need to be set: the learning rate 
α, the exploration rate ε, and the number of learning iterations, N. A dynamic learning rate α(n) was used and 
updated at the end of each iteration 𝑛𝑛. The update rule for α is shown in Equation (16), which is called the 
Generalized Harmonic Step-size function [17]. The parameter a was chosen to be 5.62e5 so that the learning 
rate would be 0.01 at the end of the learning runs (as is suggested in Ref. [17], p. 430). The remaining two 
parameters were defined as follows. The exploration rate was held constant at 0.25, and the number of learning 
iterations was 107. 

𝛼𝛼(𝑛𝑛) =
𝑎𝑎

𝑎𝑎 + 𝑛𝑛 − 1
 (16) 

Before a near-optimal policy could be learned, an appropriate state aggregation scheme had to be defined. 
The state aggregation scheme selected after extensive testing is listed in Table 5. Using this configuration, the 
total run time to determine the ADP-generated policy was 23.3 hours. 

Table 5: Encodings used to define the state aggregation scheme. 

Encoding 1 Encoding 2 Encoding 3 Encoding 4 

{50,50,50,100} {50,100,50,50} {50,50,100,50} {100,50,50,50} 
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4.1 Policy Evaluation 
The ADP-generated policy was compared to a set of four benchmark policies. The set of benchmark policies 
contained two policies based on Policy Function Approximation (PFA), which are essentially rule-based 
policies. The first PFA policy, referred to as critical-first, evacuates individuals in the red triage category 
(critically ill) first and then moves on to the less severe medical states (yellow, green, and finally white). 
This policy represents what might be perceived as the most humane, or compassionate policy. The second 
PFA policy, named green-first, evacuates individuals in the green triage category first, then those in the 
white, red and, finally, yellow triage categories. This policy represents one that is focused on extracting 
those that do not need a stretcher before those that do, and in addition puts greater emphasis on those in a 
worse triage category in each case (no stretcher: green, then white; stretcher: red, then yellow). The next 
benchmark policy was a random policy, which simply chooses a decision at random from the set of 
allowable decisions. The final benchmark policy was a myopic policy, which similar to the PFA-based 
policies only used the presently available information to form its decision. However, in this case, decisions 
are made via a knapsack optimization model that aims to maximize the number of individuals evacuated at 
each epoch. If a tie between decisions was encountered, then the decision was selected randomly from 
among the tied decisions. 

The results of the policy evaluation are illustrated in Figure 5, and the mean and variance of each distribution 
are listed in Table 6, which were used to perform a statistical comparison between the ADP-generated policy 
and each of the benchmark policies. The results of this comparison are listed in second last column of the table. 
As can be seen in Figure 5, the random and critical-first policies performed substantially worse than the other 
benchmarks and ADP-generated policy. The ADP-generated policy was able to improve upon these 
benchmark policies by 42 ± 16% and 31 ± 7%, respectively. The myopic policy, though a considerable 
improvement over the random and critical-first, still performed below the ADP-generated policy by 12 ± 4%. 
Finally, the green-first policy performed the best, and was statistically quite similar to the ADP-generated 
policy but outperformed it by 5 ± 3%. 

The statistically similar results between the ADP-generated policy and the best performing benchmark policy, 
green-first, warrants further investigation. To gain a qualitative understanding of the strategies used by the 
ADP-generated policy we can examine the average cumulative number of individuals evacuated from each 
triage category as a function of event number. A series of these graphs are shown in Figure 6 at various points 
throughout the learning process. The graphs in the left column illustrate the changing distribution of individuals 
evacuated by helicopter, and the second column contains the graphs for the ship. The dashed lines show the 
average cumulative number of individuals evacuated from each triage category by the green-first policy, 
whereas the solid lines depict the ADP-generated policy. 

As can be seen in Figure 6, after 1 million learning runs, the ADP-generated policy for both the helicopter and 
the ship selects fairly evenly between the white and green triage categories, almost entirely ignoring the more 
critical triage categories. As the learning process progresses, the number of individuals selected from the green 
category grows at the expense of all other categories. From this it can be seen that the ADP-generated policy 
is approaching the green-first benchmark policy. Although the end results are statistically similar, the amount 
of time required to complete the evacuation is considerably less. The green-first policy required roughly three 
quarters the amount of time as compared to the ADP-generated policy. This gives confidence to the idea that 
the green-first policy is a near-optimal policy. 

Given that the ADP-generated policy does not outperform the green-first policy and that its prioritization of 
individuals in the green triage category tends towards this benchmark, these results indicate that for this 
scenario, incorporating the future value of a decision within the policy provides no value to the decision maker. 
This result tends to agree with guidance provided by Powell: “it should not be surprising to find out that if it 
is possible to move from any state to any other state (instantly and with no cost), then a myopic policy will be 
optimal” ([17], p. 594), where myopic may be interpreted as either a cost function approximation or a PFA. 
This is the situation considered in this scenario; that is, the contribution is received immediately upon loading 
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individuals onto either the helicopter or ship. However, this guidance does not indicate the optimal structure 
of this policy. In particular, Figure 5 demonstrates the wide range of results achieved for different policies that 
ignore a decision’s downstream impact, ranging from random policy that performs rather poorly to the 
green-first policy that performs nearly 1.75 times better in terms of lives saved. 

 

Figure 5: Distributions of the expected number of individuals evacuated when following each of 
the five policies. 

Table 6: Summary of policy performance. Statistical comparison between the ADP-generated 
policy and the four benchmark policies are shown in the second last column. The values show 
the 95% confidence intervals (CI)s of the expected difference between the performance of the 
ADP-generated and benchmark policies. 

Policy Mean Variance Comparison 
(95% CI) 

Rank 

Green-First 1504 17.0 -5 ± 3% 1 

ADP-generated 1434 21.2 - 2 

Myopic 1255 23.0 12 ± 6% 3 

Critical-First 987 16.5 31 ± 17% 4 

Random 823 31.3 42 ± 16% 5 
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Figure 6: The solid lines show the average cumulative number of individuals evacuated from each 
triage category as a function of event number when following the ADP-generated policy. 
The dashed lines show the average cumulative number of individuals evacuated from each triage 
category when following the green-first policy. Key: Blue: white triage category, Green: green 
triage category, Yellow: yellow triage category, Red: red triage category. 

4.2 Test Scenarios 
Next, we apply the ADP-generated policy within a range of test scenarios and compare the outcome to that 
achieved using the green-first policy. The test scenarios selected are similar to the representative planning 
scenario, with the exception of the number of helicopters and ships employed. Specifically, we evaluate each 
policy in 48 scenarios, where the number of helicopters and ships ranged between zero and six (with at least 
one of either being present). The MDP was simulated 35 times for each scenario, and policy combination and 
the expected number of evacuated individuals, depicted in the scenario, was computed. The initial arrival time 
of each ship and helicopter is listed in Table 7. 
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Table 7: Initial arrival times of helicopters and ships in test scenarios. 

 Initial arrival Time [h] 

Helicopter Ship 

1 48 4 

2 49 5 

3 50 6 

4 51 7 

5 52 8 

6 53 9 

The results indicate that the green-first policy, in which the helicopter and ship policies are non-coordinated, 
outperforms the ADP-generated policy regardless of the number of ships or helicopters (Figure 7). In addition, 
for both policies, the results indicate that when four ships are available, the presence of helicopters provides 
little benefit within the context of the scenario studied. However, it should be noted that these results may be 
sensitive to the scenario’s assumptions, including the helicopter and ship revisit times, their capacities, the 
number of individuals to be evacuated, and so on. Regardless, although the ADP-generated policy did not 
outperform the green-first policy in either the representative or test scenarios, modelling the problem as an 
MDP and searching for a near-optimal policy demonstrates how these methodologies may be used to provide 
decision support to multi-domain operations. 

 

Figure 7: Test scenario results. 

5.0 CONCLUSION 

This article examined a MAJMAR scenario in which a large number of individuals, whose health stochastically 
deteriorates over time, are stranded at a remote location, and must be evacuated. Within this context, 
a multi-domain evacuation operation was examined, where individuals are evacuated either by air or sea, with 
the aim of the operation being to maximize the number of survivors. This problem was modelled as an MDP, 
and due to the curses of dimensionality, an ADP approach was employed to search for a near-optimal policy. 
Our search focused on a decision policy based on a VFA that used a lookup table representation based on state 
aggregation. The ADP-generated policy, which included two sub-policies ‒ one for the helicopter and one for 
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the ship ‒ was evaluated using a baseline scenario and compared to four benchmark policies: a random policy, 
a myopic policy, a PFA that prioritizes time-critical individuals first, and a PFA that prioritizes healthy 
individuals first. 

The results of the policy evaluation demonstrated that in the context of the scenario and the MDO being 
studied, prioritizing the evacuation of the healthy individuals first maximizes the number of survivors. This 
benchmark policy outperformed the ADP-generated policy by 5 ± 3%; however, the ADP-generated policy 
was shown to prioritize individuals in the green triage category in a similar way to the green-first policy, 
indicating that both may be near-optimal policies. This result generally agrees with Ref. ([21], p. 813) which 
suggested that “[starting] from the most urgent jobs and [moving] onto those that are less urgent as resources 
become available” is not the best policy to save the most lives and that “who gets the top priority [to be 
evacuated] should ideally depend on the number of patients as well their injury characteristics” (Ref. [21], 
p. 827). Simply stated, to maximize the number of survivors, it is beneficial to evacuate those who have less 
critical care needs than those with a lower chance of survival. 

In addition, our results indicated that the coordination of loading policies between domains may not be 
required. This is for two reasons. First, the ADP-generated policy, which incorporated the downstream impact 
of a decision made here and now, did not outperform the green-first benchmark policy that does not consider 
the future value of a decision. Second, the ADP-generated policy followed a similar prioritization scheme to 
the green-first benchmark in both domains. Given that considering downstream impact may provide no value 
and that maximum number of survivors occurs when both domains employ the same policy, it is concluded 
that within the scenario studied each domain’s loading policy may operate independently. 

Although our results indicate that the coordination of loading decision policies between the air and maritime 
domain may not be required, the scenario considered does not account for an individual’s health while en route 
to an FOL, while at an FOL, or during transport to a southern location. These dynamics are accounted for to a 
degree in Ref. [15], however, the authors do so in a deterministic manner within a single optimization model 
rather than stochastically. Consideration of these dynamics, along with incorporation of a wider range of 
uncertainties (e.g., weather, breakdowns, transit time, etc.), and an evaluation of the sensitivity of the candidate 
decision policies to variations in the mean transition times between triage categories, is required to gain a more 
fulsome understanding of how the policies perform. In addition, incorporating the abovementioned dynamics 
will result in a wider range of decision policies that must be considered, including which individuals are loaded 
onto fixed-wing transport at an FOL, refuelling decisions at the FOL and southern location, and – as the number 
of transports are increased – decisions regarding their coordination due to limited space at an FOL may be 
required. In addition, incorporating these components will result in a reward being received when individuals 
arrive at the southern location, rather immediately upon loading at the evacuation site, which may alter the 
structure of the loading policy. To seek near-optimal policies within the context of such a model, it is 
anticipated that RL/ADP will play a critical role towards providing effective decision support. 
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