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ABSTRACT  
This article presents IGAN (Inferent Generative Adversarial Networks), a neural architecture that learns 
both a generative and an inference model on a complex high dimensional data distribution, i.e. a 
bidirectional mapping between data samples and a simpler low-dimensional latent space. It extends the 
traditional GAN (Generative Adversarial Networks) framework with inference by rewriting the adversarial 
strategy in both the image and the latent space with an entangled game between data-latent encoded 
posteriors and priors. It brings a measurable stability and convergence to the classical GAN scheme, while 
keeping its generative quality and remaining simple and frugal in order to run on a lab PC. IGAN fosters the 
encoded latents to span the full prior space: this enables the exploitation of an enlarged and self-organised 
latent space in an unsupervised manner. An analysis of previously published articles sets the theoretical 
ground for the proposed algorithm. A qualitative demonstration of potential applications like self-
supervision or multi-modal data translation is given on common image datasets including SAR (Synthetic 
Aperture Radar) and optical imagery. The code is available for download in Matlab file-exchange [1]. 

1.0 INTRODUCTION 

1.1 Background on generative adversarial networks and variational auto-encoders 
Generative Adversarial Networks (GANs) [2] and Variational Auto Encoders (VAEs) [3] are standard 
methods for learning generative models of complex data distributions. In their basic form, GANs tend to 
generate better quality data samples than VAEs, but suffer from stability and mode collapse problems [4]. 
GANs were not originally built to produce inference unlike VAEs. Inference is however crucial for 
numerous tasks that are much easier when processed in the latent space rather than in the data space: e.g. 
classification, clustering, disentanglement, interpolation or extrapolation, compression, domain and style 
transfer, to name a few [5] [6][7][8]. 

Let  be a real data distribution and  a known prior model, e.g. a vector of Gaussians. Let  be a data 
distribution generated from , and  a latent distribution estimated from .  is defined as an Encoder 
that encodes data to latents (e.g. ),  a Generator that generates data from latents (e.g. 

 ), and  a Discriminator with a single decision output.  

A Vanilla GAN is composed by a Generator and a data Discriminator. It builds an adversarial game between 
real and generated (fake) data, using  and  to minimize their Jensen Shannon 
Divergence [2]. Such architecture aligns the generated data distribution with the real one, but ignores latents 
inference. 

A Vanilla VAE uses an Encoder and a Generator to minimize the two terms of the ELBOEvidence Lower 
Bound Optimization (ELBO) [3]. The first term minimizes the Kullback Liebler Divergence between the 
latents encoded from real data and the prior. The second one is a regularization term that minimizes the 
reconstruction error in the real data space . It aligns the posterior distribution of latents 
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encoded from real data with prior, and constraints the reconstruction data error to follow a given distribution 
(e.g. Gaussian if ). However, the Euclidean distance yields blurry data reconstructions, partly because 
its data similarity judgment is not robust to minor data transformations such as translations. 

1.2 Bridging the gap between GAN and VAE 
Many solutions have been proposed to combine the best of the two worlds: VAEGAN [8], BIGAN [9], ALI 
Many solutions have been proposed to combine the best of the two worlds: VAEGAN [9], BIGAN [10], ALI 
[11], ALICE [12], AGE [13], IntroVAE [14], BigBIGAN [15], AEGAN [16], DALI [17], LIA/GAN [18], 
ALAE [19]… Basically, all these methods bring a latent inference to the classical GAN, and compete to 
better align distributions in both latent and data spaces, hopefully for both posteriors and priors. Their 
relative performance is often measured by the ability of the algorithm to reconstruct the input data  from 
the auto-encoded regeneration of its inferred latent: . It is yet impossible to expect a perfect 
reconstruction of real data since the dimension space reduction from data to latents implies that some 
information has to be lost: details or outliers that are not statistically relevant to the training dataset need be 
filtered out of the generation process, and consequently out of the reconstruction. Other reconstruction 
choices have to be made depending on the input data types and the final application of the algorithm. Most 
methods, if not all, are focused on photographic optical images applications, and thus reconstruct images via 
a Euclidian distance alternative, for instance with a perceptual loss built on features extracted from the latest 
layers of an external pretrained classifier, as inspired by StyleGAN [20].  

Only a few methods consider the latent space on a par level with the data space, while it is de facto where 
most of the post-training data processing will be applied and most useful applications drawn. Yet, if we 
follow Rabelais’s famous advice to “break the bone and suck out the substantific marrow” [Gargantua], the 
reconstruction of prior latents should even prevail on real data reconstruction to assure a bijective inversion 
between the Generator and the Encoder on the prior space, i.e. to form an optimal latent auto-encoder. In 
ALI [11], authors already suggested that an Encoder could use such a reconstruction while playing the 
conventional GAN scheme. Nevertheless, ALI, its twin BIGAN [10] (Bidirectional Generative Adversarial 
Networks), or its later extension BigBIGAN [15] used a large Discriminator embedding both images and 
latents whose aim is to equalize the joint probabilities , but with no explicit 
reconstruction term. Unfortunately, this lack of deterministic point-wise matching between  and  
was shown to produce poor data reconstructions. Recently, DALI [17] proposed to guide the classical GAN 
adversarial game with a reconstruction term exclusively computed in the latent space to benefit from an 
easier reconstruction error model than in the data space. Then, two similar techniques (LIA/GAN [18] and 
ALAE [19]) introduced an intermediate latent space reconstruction, with a complementary latent auto-
encoder linked to the prior latent space. AEGAN [16] presents a clever revisit of the famous unpaired image-
to-image translator CycleGAN [21], where the latent space takes the place of one of the target image spaces. 
The problem is then seen as a double GAN in both image and latent spaces (but not embedded). A cycle 
consistency loss is built on the reconstruction of auto-encoded latents and images to assure the data-to-latent 
pairing that needs to be learned. 

This analysis suggests that: 

• A latent GAN counterpart is mandatory to allow the encoded latents distribution to span the full 
extension of prior space and explore all realistic possibilities for generating data.  

• The latent and data GANs should be embedded within a single Discriminator to emphasize the joint 
probabilities equalization. This embedding needs to be done on an intermediate space, as already 
required by their dimension difference.  

• A cycle consistency is needed for data-to-latent pairing and requires at least the auto-encoded latents 
reconstruction. 
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With IGAN (Inferent Generative Adversarial Networks), I propose to aggregate this framework with an 
original entangled and embedded adversarial game in both latent and image space. The architecture is kept 
fairly light with a low computation and memory load in order to run on a lab PC with a single GPU. 

2.0 IGAN: INFERENT GENERATIVE ADVERSARIAL NETWORKS 

2.1 IGAN architecture 
IGAN has been built with the intention to give an equal importance to both data and latent spaces. Since the 
adversarial game between fake  and real data  is responsible for the high quality of data generation, the 
latent generation/inference should also benefit from its own adversarial game between fake encoded latents 
of real data  and real prior model . Previous works like DALI [17] and BigBIGAN [15] pointed on the 
importance to equalize the joint probabilities . We claim that it is even better 
to equalize the following joint probabilities: . This modified condition enables 
us to rewrite the coupled adversarial game in an embedded space where whatever  couple represents 
a “True data-latent couple”, and  stands for the “False/generated data-latent couple” to play 
the adversarial game with. The overall IGAN architecture is presented in the following Figure 1. 

 

Figure 1: IGAN: Inferent and Generative Adversarial Networks architecture 

Prior latent and real data  are both fed to a unique Discriminator , concatenation being performed at a 
secondary latent stage in the latest layers of the Discriminator. This sets the reference for what will be used 
as the “True data-latent couple” discrimination. Prior latents are also turned into generated data  through 
Generator , while the real data are encoded into generated latents  by Encoder . These “False/generated 
data-latent couples” will be driven through the same Discriminator as the “True data-latent couples” to feed 
the adversarial game. This seeds the following adversarial minimax optimization goal for the networks: 

                        (1) 

In Figure 1, one can easily spot the  data auto-encoder and  latent auto-encoder, respectively 
at the bottom and top lines. It is important to see that we will also be able to use the reconstruction of real 
data and prior latents to follow  and, furthermore, the reconstruction 
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of generated data and latents encoded from real data with . 
Incorporating the corresponding additional adversarial games in Equation (2) will ensure that not only the 
reconstructed real and fake data, but also the reconstructed real and fake latents will follow the real data and 
prior latent statistics (respectively).  

The proposed IGAN architecture is not as greedy as it may appear at first sight. It shares the same networks 
(  and ) as the classical GAN, and only requires the addition of a data Encoder .  Whereas AEGAN [16] 
was built on CycleGAN [21] grounds, IGAN may be related to the DiscoGAN [22] architecture with the 
latent space replacing one of the two image data spaces, and with the major difference that it uses a unique 
Discriminator instead of the two Discriminators traditionally used in such unpaired image-to-image 
translators (one per image side). 

However, alignment of the latent and image distributions is not sufficient to guarantee the element wise 
latent or data reconstruction. A cycle consistency loss is then introduced to learn the data-to-latent pairing. 
Let fake data  be re-encoded by  to   as reconstructed/autoencoded latent priors. Thus, a 
regularization term  is added to the Encoder and Generator loss to ensure that the reconstruction 
errors of encoded latents follow a simple distribution (i.e. Gaussian when using  norm). With a sigmoïd 
activated Discriminator, the losses to be minimized by the different networks translate into Equation. (2). 

  (2) 

Where  is a hyper-parameter weighting. Additionally, a cycle consistent data reconstruction loss between 
 and  may also be added to help the data-to-latent pairing process. But since the  norm 

is often suboptimal on raw data and may generate noisy reconstructions, an alternative is to minimize the real 
latent reconstruction error (e.g. , or the difference between some intermediate 
Encoder layers activations when fed with  and . 

Upon convergence, the Generator and Encoder become invertible relatively to each other when fed with 
latents complying with prior distribution, or data generated from prior. It is worth noting that the 
reconstruction of real data will still align with the real data distribution, but will ignore details that are not 
consistent with the somehow compressed distribution of real data learned by IGAN. Nevertheless, the 
simplified latent distribution extracted from real data will be very useful since it has been self-organised by 
IGAN to span a maximum of the full prior space. Therefore, close data in the data space (in the semantic 
sense) should be encoded to close latents (in  sense), and close latents should generate close data. 

2.2 Implementation choices 
It is worth noting that the IGAN architecture do not impose a specific layer implementation for the neural 
networks, and may be tested with the ones previously suggested in Refs [9] to [19], using resnet nodes [15], 
attention layers, or even the latest transformers like in TransGAN [24].  

Since applications will be shown Section 3 on image datasets with mid-size image dimensions (e.g. 64*64 
pixels), a very classical DCGAN implementation [23] is chosen with [Stride 2 Convolution, BatchNorm, 
Relu] down-sampling blocks for the data Encoder  network, and [Stride 2 Transposed Convolution, 
BatchNorm, Relu activation] up-sampling blocks for the Generator  [1]. The Discriminator  is built with 
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the same down-sampling blocks as the Encoder for the data input branch; a secondary latent concatenation 
layer is added for the latent input branch, as well as a simple final Fully Connected layer with a single output. 

With conventional GANs, it is often hard to estimate the convergence of the optimization, and stopping 
criteria remain unclear. With IGAN, multiple performance and convergence indicators are available: 

• The Discriminator scores monitor the GAN balance within the latent-data generation process. 

• The prior latent reconstruction error (e.g.  ) measures the latent space consistency 
and Encoder/Generator bijective invertability. 

• The fake data reconstruction error (e.g.  may also be used to test the 
generated data space consistency and Encoder/Generator bijective invertability. 

• Real data reconstruction error (e.g.  should be used cautiously since outliers or 
statistically non-coherent details will be ignored from reconstructed data. The real latent 
reconstruction error (e.g.  ) may be used as a substitute. 

3.0 APPLICATIONS 

3.1 Data and latent reconstruction 
The AFRL SAMPLE database is a recently released collection of simulated Synthetic Aperture Radar (SAR) 
signatures of ground targets paired with MSTAR image chips [25]. The dataset contains ten targets observed 
at fixed incidences (15° to 17°) for 360° span of azimuth orientations. IGAN was trained on the real SAR 
image chips and the reconstruction of both trained and generated images is shown Figure 2. It should be 
noticed that this training dataset is very small (less than 6000 images), which may explain some punctual 
reconstruction discrepancies. However, IGAN managed to generate and reconstruct fairly plausible target 
signatures, including the variety of background levels, targets orientations and shadows. 

 
Figure 2: SAMPLE dataset [24]: examples of SAR image chips used for IGAN training (up left), 
reconstruction of training images (down left), some images generated by IGAN (up right), and 

reconstruction of generated images (down right) 



 
IGAN: Inferent and Generative Adversarial Networks 

19 - 6 STO-MP-SET-273 

The filtering effect of non-statistically relevant details and outliers is more obvious when IGAN is trained on 
the ANIME-FACE dataset [26] (over 60000 images of manga faces): for instance glasses, hairbands or 
fingers are not taken into account in the generation or reconstruction process as expected from their relative 
scarcity among the training dataset images (cf. Figure 3). 

 

Figure 1: auto-encoded reconstructions of real and generated images with IGAN trained on 
ANIME-FACE dataset [26]  

3.2 Self-supervised learning properties 
IGAN was trained on the MNIST digits database [28] and the t-distributed Stochastic Neighbour Embedding 
(t-SNE) statistical method [27] was used to visualize the inferred latents distribution for Train and Test 
images (cf. Figure 4). Note that this training was done with no supervision, i.e. without any use of the digits 
label or even the number of classes. Figure 4 results show that latents belonging to the same digit class form 
relatively compact clusters on train set, and that we remarkably find the same clusters on full test set (simple 
and hard cases mixed). Some clusters boundaries are even clearly separated from others. This highlights the 
nice self-organisation property of the latent space generated by IGAN, with close latents corresponding to 
semantically close data. A fully un-supervised classification and class cardinality estimation would of course 
require an automatic clustering post-processing. Nevertheless, this example shows that IGAN presents some 
competitive properties with semi-supervised methods like InfoGAN [6], disentangling ones like BetaVAE 
[7], or clustering others like ClusterGAN [5].  
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Figure 2: IGAN trained on MNIST dataset [28]: t-SNE of latents generated on training set (left), 
and on test set (right), both with post-training color visualisation of digits ground truth 

3.3 Latent space exploration and data transformations 
The self-organization provided by IGAN enables an easy computation of some classical interpolations and 
arithmetic in the latent space. As an illustration, Figure 5 presents the bijective transformation of “serious 
brunettes into smiling blondes and vice-versa” with IGAN being trained on the CelebA dataset [29]. The hair 
colour and smile attribute tags were used to select the desired image/latent couples, compute the mean latents 
corresponding to either characteristic, and do the subtract/add arithmetic with the complementary mean 
latents to obtain the cross-characteristic images reconstructions. As expected, the transformation retains the 
facial personality and the head position of the original images, while filtering out the non-statistically 
relevant details/outliers (background, hat, scarf, arm, boyfriend, etc.). 

 

Figure 3: CelebA [29] images with “serious & brunette” characteristics (top left), “smiling & 
blonde” (bottom left), IGAN reconstruction of “serious & brunette” changed into “smiling & 

blonde” (top right), and IGAN reconstruction of opposite change (bottom right) 

3.4 Shared latent space and multi-domain transformations 
Several publications have already explored the exploitation of a common or shared latent space, especially in 
the context of multi-modal image transformations, e.g. UNIT [30], MUNIT [31] or XGAN [32]. Most of the 
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proposed solutions are limited to a dual image domain translation, whereas the IGAN architecture is de facto 
well suited for multiple data domains change (not limited to images) on a single shared latent space. 
Moreover, IGAN does not require a simultaneous training of paired domains, as each domain keeps its own 
separated Encoder and Generator training. Since IGAN spans the entirety of the latent space for every 
domain, any data in one domain will be turned into a plausible data for any other domain. Figure 6 illustrates 
the reconstruction of domain  (ANIME-FACE [26]) and domain  (CelebA [29]) images through 
successive cross-domain translations  and . Perfect 
reconstructions are not expected for data going through so many networks, but it is noticeable that the main 
image characteristics remain clearly unchanged. Domains that share common semantic features should 
probably be merged into a single IGAN training to avoid unrelated latent correspondences between domains 
(e.g. non corresponding head orientations in both domains in Figure 6 example). Dedicated optical images 
manipulations often use separated latent spaces for style and content [33], and the IGAN framework could be 
advantageously adapted to this context in the future. 

 

Figure 6: Reconstruction of ANIME-FACE [25] and CelebA [28] images through successive 
cross-domain (ANIME-FACE  CelebA) translations 

4.0 CONCLUSIONS 

IGAN builds a symmetric entangled adversarial game and a bijective auto-encoder in both data and latent 
spaces with multiple advantages:  

• It balances, stabilizes the generation of data (and latents) and avoids mode collapse, while keeping 
the data generative quality. It provides measurable performance and convergence indicators. 

• It spans generated latents on the full prior space, giving access to a wider generated space and thus 
to more variability of generated data.  

• It provides an un-supervised self-organization of the latent space and enables the reconstruction of 
real and generated images and latents.  

• It remains simple and frugal adding only an Encoder network to the Vanilla GAN. 

This leads to numerous latent based applications for complex high dimensional data processing, such as 
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semantic attributes arithmetic and interpolation, self-supervised learning, or multi domain translations (some 
other examples are shown in [34]).  For future work, a conditional version (CondIGAN) and fractionable 
latent space extensions are being considered. The original adversarial game developed for IGAN also 
suggests revisiting DiscoGAN and similar methods from a single Discriminator perspective using channel 
wise concatenated images from both domains as input. 
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